Pages

Ads 468x60px

Labels

Showing posts with label Business Intelligence Challenge. Show all posts
Showing posts with label Business Intelligence Challenge. Show all posts

Monday, 22 December 2008

Business Intelligence Challenge – Product Upgrades & Migrations, Validation – 5

Once the code has been moved to the target platform (Moving the Code), whether it’s an upgrade to a newer version or migration to another newer platform, the next step is to validate the objects moved.
Validation Process involves verification or testing of the objects in the target platform to ensure that they deliver the same output as the older objects in the source platform.
Validation is a key process by which the migration or upgrade process is certified as successful, it’s usually laborious and a time consuming process. Let us see how the Validation Process can be broken into different steps and automated for saving time and for improved accuracy. We can look at the Validation process to encompass three steps, they are
  • Metadata Validation
  • Run Validation
  • Output Validation
Metadata Validation involves comparison of the metadata definitions between the existing source environment and the target environment. This requires that the metadata of the source and the target environment be captured for the comparison.
Steps Involved:
  • Capture the source metadata into a relational structure, as part of Object Consolidation we would have captured the source metadata
  • Capture the target platform metadata in a similar way into a relational structure
  • Run SQL queries to automate the metadata comparison process
Metadata Comparison would be done at the level of semantic layer definitions and individual reports. Let us take the case of metadata comparison between two semantic layers, in case of Business Objects; Universe is the semantic layer definition. After an upgrade from an older version of Business Objects to its newer version, the first level of metadata validation between the universes would be to check whether the object counts between the universes match like the classes, the objects, the filters and then further comparison on their definitions.
If there are any differences when comparing the definitions and if they fall within the known differences between the two versions (source & target) then they are good else would require code fixing in the upgraded object.
Since we always try to validate the reports by what it gives as output, the validation process is limited by the data fed in; we could miss scenarios of a filter clause not being tested. Metadata Validation can overcome the limitation in data preparation for different scenarios for testing. If a report passes through a Metadata Validation expectation then we could 100% say that the report has upgraded or migrated effectively.
Benefits:
  • Sets up a strong base on the metadata understanding, as the objects between different platforms has to be mapped and the bridges gaps identified to run automated metadata validation
  • Improved accuracy in the validation process, overcomes the limitation in data preparation
  • Enables determining issues without running the report against the data
Run Validation is to perform a dry run of the reports in an automated way to determine whether the reports run (open) successfully or not.
When we give a report to a tester, the first activity he would perform is to run the report and if it doesn’t go through the problem is reported or analysed further. We try to foresee this problem in an automated way.
Steps Involved:
  • Have scripts to invoke the reports in batch mode, as soon as the objects are upgraded invoke(open) all the upgraded reports in the batch mode
  • Capture the errors while opening/running the report into a log
  • Classify them into two categories ‘reports that ran’ and ‘reports that failed’
Some reports could fail to open because of incorrect connection details, some due to object not found etc. This process of quick run in an automated way enables to locate the failure reports immediately and also help determine the reason for the failures in one go. Limiting the data input should be considered while invoking the report.
Benefits:
  • Saves time in determining errors due to report opening or running
  • Enables building a common solution for the code fixing team, as the ‘run errors’ are consolidated
Output Validation, is to validate the output delivered by the reports. There are two levels of output validation; they are Format Validation and Data Validation.
Format Validation is to check on the format of the data presented like font size, colour, bold, label location etc which doesn’t relate to the data value.
Data Validation is to check cell by cell the data value content between the two reports.
Steps:
  • Run the source report and export the output data to excel/word
  • Run the target report and export the output data to excel/word
  • Compare the outputs for the format and the data
The best means of comparing the output of two reports is to export them to Excel and then performing a comparison between the two Excel’s. If we can export the reports to a word format then we can leverage the word compare utility, even an export to XML would enable using available utility. In case of excel we would need to build a utility that can compare the two excel sheets.
The above three validations are some of the key aspects in validating the objects of semantics and reports; let me know your thoughts on the other means of validation …

Monday, 24 November 2008

Business Intelligence Challenge – Product Upgrades & Migrations, Moving the Code – 4

Last time we discussed about Impact Assessment , the next logical step after this is to perform the actual upgrade or migration of the code.
Moving the Code: Performing Upgrade or Migration of the Objects
When we talk about product upgrades, always the product vendor provides tools by which the objects in the earlier version can be upgraded to the latest version. Yes we would see some objects failing through while using such tools; these are the ones that would need rework after the upgrade process.
When we talk about product migration like moving from Cognos to Business Objects or Business Objects to Cognos, there is good scope for us to look for some ways to automate the code migration. Earlier discussions have been on how to leverage the metadata for understanding the environment, now we are looking at an option on how to manipulate or transform the metadata so that an object in platform ‘A’ becomes compliant to platform ‘B’.
Steps involved in building an automated product migration process
Perform metadata level object mapping between the two platforms, determine the gaps. This would actually be a ‘by product’ of ‘Step 2’ in Impact Assessment
Build individual components that would
  • Read the metadata from the source platform and prepare a repository
  • Have the knowledge of the match & gap between the platforms, could be reference tables
  • Transform the ‘source’ metadata and write out as understood by the ‘target’ platform by using the reference tables
Benefits of Automated Migration
  • Helps avoid creation of objects from scratch
  • Ensures availability of time for testing (core task) than code development
  • Enables team to have a flexible skillset
  • A faster way of delivering things when a ‘one to one’ migration from the source platform is seen as a must
Automated Migration Challenges
Transforming the source metadata to the target platform would be a challenge, especially with data manipulation functions. Having a good understanding of the gaps will help; a reference table mapping the functions between the platforms would be useful. In scenarios where a function cannot be converted to the target platform, a comment can be written into a log file enabling quicker attention.
Have seen good success in writing such automated migration components though not 100%. With almost every products providing good SDK kits for reading and as well writing metadata and as well with the support for XML structures, writing such bridges for object migration are getting easier.
Whether the objects in a product are migrated/upgraded in an automated way or not, the following activity of ‘Validation’ plays a key role in ensuring the final quality, next time let us discuss on some of the means for effective validation ….

Wednesday, 29 October 2008

Business Intelligence Challenge – Product Upgrades & Migrations, Impact Assessment – 3

The next step after ‘Object Consolidation’ is Impact Assessment.
What is Impact Assessment? The process in which, we try to determine the variations or gaps in the existing objects/reports by comparing against the target platform.
The gaps or variations in an existing environment could be due to an existing function being replaced by a new function or an existing function not being supported with an equivalent function in the new platform.
Steps Involved in Impact Assessment
We try to do this comparison against the target platform ‘Impact Assessment’ in an automated way by leveraging the underlying metadata of the existing environment.
1. Take the ‘object metadata’ collected as part of the Object Consolidation
2. Collect details of the possible issues faced during the upgrade or migration process. The source of details would be from
  • prior experience in executing similar projects
  • the manuals and release notes provided by the product vendor
  • the pilot project executed with the subset of objects from the existing setup
3. Convert the ‘issues’ identified into a relational structure table.
  • An issue could be an observation like the function ‘sum’ has been now changed in the newer version of the product to the word ‘sumif’
  • One way of converting this issue to a relational structure is to have two column names ‘issue_case’ and ‘issue_type’ where in issue_case will carry the value ‘sum’ and issue_type will carry the value ‘aggregate’.
  • Converting to a relational structure enables using SQL queries for automated search of the impacted objects by joining the ‘object metadata’ table with the ‘issue’ table
4.Run SQL queries joining the ‘issue’ table with the ‘object metadata’ table to determine the impacted existing objects
5.Classify each object by the degree of impact(number of impact points) and decide on the strategy of upgrade/migration for each these groups
Benefits of Impact Assessment
  • Foresee the challenges and being well prepared for system upgrade or migration
  • Ability to estimate and plan the execution & testing phases very effectively
  • Enable building comprehensive test cases
  • Minimize surprises and provide confidence to the execution team
  • Helps in making decisions of whether we should consider a object to be built from scratch or upgrade/migrate
Impact Assessment Challenges
First gathering the knowledge of issues; the options are talk to a person who has done an upgrade project to collect the issue details or perform a quick pilot with an appropriate sample from the set of objects to determine the issues.
Second conversion of issues logs into relational structure and running of queries to determine the impacts; both of these would require a good understanding of the underlying metadata structure, so explore the metadata structure and understand them to the fullest from the point of analysis.
Next time let us discuss on one other key task in an upgrade project…

Friday, 10 October 2008

Business Intelligence Challenge – Product Upgrades & Migrations Product Upgrades & Migrations, Object Consolidation – 2

As an initial step one of the key tasks to be considered in any Business Intelligence product upgrade or migration is ‘Object Consolidation’.
What is Object Consolidation? The process of getting to understand the current BI environment by means of the metadata and analysing them with a perspective to determine and eliminate redundant objects. The ‘object’ in a BI product would be its reports and the semantic layer definitions (like Universe in Business Objects).
Steps Involved in Object Consolidation
1. Locate all objects (reports and semantic definitions). These objects could be from a central repository and as well from individual user folders and desktops
2. Check whether the Object’s metadata are available in a relational storage (metadata repository) else build processes that would collect the metadata of the objects and store them into a relational structure
3. Run SQL queries against the relational structure to determine
a.‘Duplicates’; the objects that have same metadata elements
b.‘Clusters’; the objects that have similar metadata elements. when objects(reports) differ between them by a few 1 or 2
metadata elements then these Objects are grouped as ‘Clusters’
c. ‘ Dormant’; the objects that are no longer used
d. Complexity of the objects in terms of factors like the number of metadata elements being used in an object
4. Share the object consolidation findings to the users for confirmation and verification
5. By eliminating the duplicate & dormant and including only the prime in a cluster prepare the consolidated list of objects
a.Duplicate objects are directly removed
b.From the Cluster objects only the key object is considered for upgrade. After the upgrade of the key object rest of the
objects in the same cluster are derived from this upgraded key object
The consolidated list of objects and the understanding of the complexity of the existing environment becomes one of the key inputs to plan for the upgrade process.
Benefits of Object Consolidation
1. Eliminating upgrade of unwanted objects, saving on effort & cost
2. Enabling to build a clean system in the newer version or platform ensuring easier system maintenance
3. Enables effective upgrade planning based on the understanding of the environment
4. Improves the understanding of the existing environment through the metadata links
Object Consolidation Challenge: Accessing the metadata of the objects would be a challenge since many of the BI products don’t expose the metadata that can be queried through SQLs. But almost every products provide SDK kits through which the metadata can be accessed or expose the metadata as XML files. We would need to build tools that can pull the metadata using SDKs or in the cases of XML files build XML readers/parsers to pull the required metadata.

Wednesday, 17 September 2008

Business Intelligence Challenge – Product Updates and Migration-I

Product Upgrades are situations where we are moving from one version of the product to the latest version of the same product. Upgrades happen
  • to ensure support from the product vendor
  • to leverage new features provided by the latest version in terms of performance and user experience
  • as some other new product which is being added to the architecture doesn’t talk to the existing versions
Product Migrations are situations where we are moving from a platform of one vendor to another vendor’s platform. Migrations happen
  • as ‘BI Standardization’ initiatives drive organizations to move towards a common platform to operate BI systems at a lower cost and provide uniform user experience
  • because of bad experience with the current product not meeting the business needs in terms of performance or usability or product support or license cost
  • to be triggered also because of the recent mergers and acquisitions which lead organizations to think of a ‘safer’ platform
Upgrade a Challenge? With newer versions of every major product especially the ones like Business Objects, Cognos under go such a rapid change that the newer versions of the same product comes out on a different architecture with entirely new set of components, no longer upgrades are upgrades they have become effort intensive product migrations almost similar to moving from one BI product vendor to the another BI vendor.
Let us call either upgrade or migration as ‘Upgrade’ as any such initiative is for better upgraded experience of the business and the IT.
Can we do this upgrade next year? , a common dialogue when an IT team requests for a Business Intelligence Product Upgrade. Upgrade is one of the key items that would definitely come up for discussions during BI budget allocation in every organization. Fears among the business subsist that Upgrade projects would involve many of their hours without much benefit to them. For the IT Upgrade is a bigger challenge due to the unpredictability involved in the problems they would face during the course of the project and ensuring minimal disturbance to the business team. Hence the BI initiatives related to Product Upgrade get through multiple scrutinies before budget approval. Such projects are seen as an IT initiative and clear definition of business benefits becomes difficult to build.

Monday, 1 September 2008

Business Intelligence Challenge – Understanding Requirements, System Object Analysis

In the earlier discussion we had looked at understanding BI requirements through User Object Analysis, now let us look at another aspect.
The uniqueness in building BI systems when compared to other systems is that BI systems are built over the data collected by transaction (source) systems for effective data analysis. In principle a BI system should enable any kind of analysis on the data from source(s), but in many cases we pull only required elements initially to the data warehouse based on predefined analysis and get the BI system up. The requirements for a BI system is to define the scope in terms of what business processes, its scenarios and data that are of immediate need and get them available for analysis.
Even though many system owners or functional experts provide the details of the transaction system, there are still many data elements and relationship that are not reachable through the inputs from the business. We must have experienced new scenarios pointed out by the business like ‘this data element should not be updated’, ‘we need the value to be populated based on a certain flag’, such things emerge during the testing phase or in the production, such surprises occur not because that the requirements keep changing but due to lack of understanding of the clear scenarios based on the data present in the source system.
The means of understanding the business process and the system functions of a source system by looking at its data elements and their values is called ‘System Object Analysis’.
Following are the steps in ‘System Object Analysis’
1. Collect all tables from the source system, physical structure metadata like table name, column name, data type etc
2. Define the descriptions in terms of kind of data each of these tables store
3. Group the tables based on the functions through description understanding or through naming conventions present among the tables.Certain tables or groups can get eliminated here by interaction with the users. Also a table can belong to multiple groups
4. Reverse engineering the underlying data model would be useful as well
5. Perform data profiling for each of tables
6. Understand the domain values, their significance in terms when such value can occur and the relationship between tables
7. Determine the different scenarios on how the data has arrived into this table
8. Determine the fact, dimension and the attributes of dimensions within each functional area/group
9. Now with the clear details on each group and the facts-dimensions that they contribute, prepare certain questions that a business can get answered within and across the functional area (groups). Validate the questions and possibly collect more questions from Business.
10. Present to the business on what can be done on the system, prioritize and prepare the implementation plan
Based on the analysis of the tables, the Group or Functional defined initially can undergo changes in terms of the table list within a group or even a new group can come up. During the above steps regular interaction with the business users happens and the requirements of the BI system gets defined.
Benefits of System Object Analysis
Ensures complete understanding of the process by which data gets modified in the source system enabling to deliver more than what the business needs
Helps group, prioritize requirements and build case for the dependency and prepare roll out plan
Means to trigger the requirements definition from user through an interactive process, gets us raise many questions to the business about their system and process
Many a times the requirement defined by the business is to build an ad-hoc query environment for a transaction system, so System Object Analysis which enables the users navigate the requirements through the inputs from the technical team becomes almost mandatory for building an effective BI system.

Tuesday, 5 August 2008

Business Intelligence Challenge – Understanding Requirements, User Object Analysis

Let us start with the Law of (BI) Requirements“Requirements can not be created nor destroyed; it can only be transformed from one form to another”. The thought is that in all customer environments the requirements for a BI system are always available in some form or the other. We need to find the ‘base object form’ of the requirement and build upon it for further improvement.
In general data in every transaction system gets analyzed and reported in one way or the other. The BI system is built only to improve that process of analysis to a much easier and sophisticated way. Typical requirements ‘understanding’ has been through the means of Questionnaires, Interviews and Joint Discussions, these kinds of requirements gathering could miss out understanding certain things that the user needs because we might not ask the right questions or the user is not in a good mood during the discussion or the user might just provide details on what he can remember at that point of time. When we are talking about users in thousands and located across globe it becomes much bigger challenge.
The solution to cover all aspects of requirements understanding from a user perspective is by analysis of the objects that a user ‘creates or uses’ in his day today activities, we can call this ‘User Object Analysis’.
A ‘User Object’ is any artifact that a user is creating as part of his data preparation, analysis and reporting, this object could be an Excel, PowerPoint slide, Access database, a Word Document, a notepad or an e-mail.
Following are the steps in ‘User Object Analysis’
  • Collect all the ‘Objects’ from all users, the objects collected can go across years, but the key is to collect all of them which the user feels as relevant and applicable
  • Convert all of the content in each of the ‘User object’ into a relational structure, the conversion process would involve mapping the data in the Objects to its metadata like the business names/elements, tables-columns, username, depart etc
  • Analysis of this collected metadata gives a wider view, enables questioning, makes us understand the needs of the users and enables us to define improvements or provide another perspective to the existing ones
  • Prepare and submit the ‘User Object Analysis’ report highlighting the needs of each user (or user clusters) to get user confirmation
Benefits of User Object Analysis
  • An effective means to understand the needs of a user based on what he does as a daily routine
  • An easy way for the user as he has to just read thru final report for approval and need not work in providing inputs through questionnaire or discussions
  • Easily managed for users in large numbers or multiple locations
  • A good base for us to define improvements for the existing process of analysis
  • Platform to consolidate the needs across multiple users and carve out the user clusters who perform same kind of analysis
  • Enables us to think through the business process and improves business understanding
Next time let us discuss about another perspective to Requirements Understanding called ‘System Object Analysis’.