In the earlier discussion we had looked at understanding BI requirements through User Object Analysis, now let us look at another aspect.
The uniqueness in building BI systems when compared to other systems is that BI systems are built over the data collected by transaction (source) systems for effective data analysis. In principle a BI system should enable any kind of analysis on the data from source(s), but in many cases we pull only required elements initially to the data warehouse based on predefined analysis and get the BI system up. The requirements for a BI system is to define the scope in terms of what business processes, its scenarios and data that are of immediate need and get them available for analysis.
Even though many system owners or functional experts provide the details of the transaction system, there are still many data elements and relationship that are not reachable through the inputs from the business. We must have experienced new scenarios pointed out by the business like ‘this data element should not be updated’, ‘we need the value to be populated based on a certain flag’, such things emerge during the testing phase or in the production, such surprises occur not because that the requirements keep changing but due to lack of understanding of the clear scenarios based on the data present in the source system.
The means of understanding the business process and the system functions of a source system by looking at its data elements and their values is called ‘System Object Analysis’.
Following are the steps in ‘System Object Analysis’
1. Collect all tables from the source system, physical structure metadata like table name, column name, data type etc
2. Define the descriptions in terms of kind of data each of these tables store
3. Group the tables based on the functions through description understanding or through naming conventions present among the tables.Certain tables or groups can get eliminated here by interaction with the users. Also a table can belong to multiple groups
4. Reverse engineering the underlying data model would be useful as well
5. Perform data profiling for each of tables
6. Understand the domain values, their significance in terms when such value can occur and the relationship between tables
7. Determine the different scenarios on how the data has arrived into this table
8. Determine the fact, dimension and the attributes of dimensions within each functional area/group
9. Now with the clear details on each group and the facts-dimensions that they contribute, prepare certain questions that a business can get answered within and across the functional area (groups). Validate the questions and possibly collect more questions from Business.
10. Present to the business on what can be done on the system, prioritize and prepare the implementation plan
1. Collect all tables from the source system, physical structure metadata like table name, column name, data type etc
2. Define the descriptions in terms of kind of data each of these tables store
3. Group the tables based on the functions through description understanding or through naming conventions present among the tables.Certain tables or groups can get eliminated here by interaction with the users. Also a table can belong to multiple groups
4. Reverse engineering the underlying data model would be useful as well
5. Perform data profiling for each of tables
6. Understand the domain values, their significance in terms when such value can occur and the relationship between tables
7. Determine the different scenarios on how the data has arrived into this table
8. Determine the fact, dimension and the attributes of dimensions within each functional area/group
9. Now with the clear details on each group and the facts-dimensions that they contribute, prepare certain questions that a business can get answered within and across the functional area (groups). Validate the questions and possibly collect more questions from Business.
10. Present to the business on what can be done on the system, prioritize and prepare the implementation plan
Based on the analysis of the tables, the Group or Functional defined initially can undergo changes in terms of the table list within a group or even a new group can come up. During the above steps regular interaction with the business users happens and the requirements of the BI system gets defined.
Benefits of System Object Analysis
Ensures complete understanding of the process by which data gets modified in the source system enabling to deliver more than what the business needs
Helps group, prioritize requirements and build case for the dependency and prepare roll out plan
Means to trigger the requirements definition from user through an interactive process, gets us raise many questions to the business about their system and process
Helps group, prioritize requirements and build case for the dependency and prepare roll out plan
Means to trigger the requirements definition from user through an interactive process, gets us raise many questions to the business about their system and process
Many a times the requirement defined by the business is to build an ad-hoc query environment for a transaction system, so System Object Analysis which enables the users navigate the requirements through the inputs from the technical team becomes almost mandatory for building an effective BI system.
Read More About Business Intelligence Challenge