Pages

Ads 468x60px

Labels

Thursday, 20 November 2008

Zachman Framework for BI Assessments

The Zachman Framework for Enterprise Architecture has become the model around which major organizations view and communicate their enterprise information infrastructure. Enterprise Architecture provides the blueprint, or architecture, for the organization’s information infrastructure. More information on the Zachman Framework can be obtained at www.zifa.com.
For BI practitioners, the Zachman Framework provides a way of articulating the current state of the BI infrastructure in the organization. Ralph Kimball in his eminently readable book “The Data Warehouse Lifecycle Toolkit” illustrates how the Zachman Framework can be adapted to the Business Intelligence context.
Given below is a version of the Zachman Framework that I have used in some of my consulting engagements. This is just one way of using this framework but does illustrate the power of this model in some measure.
zachman
Some Salient Points with respect to the above diagram are:
  • The framework answers the basic questions of “What”, “How”, “Who” and “Where” across 4 important dimensions – Business Requirements, Conceptual Model, Logical/Physical Model and Actual Implementation.
  • Zachman Framework reinforces the fact that a successful enterprise system combines the ingredients of business, process, people and technology in proper measure.
  • It is typically used to assess the current state of the BI infrastructure in any organization
  • Each of the cells that lies at the intersection of the rows and columns (Ex: Information Requirements of Business) has to be documented in detail as part of the assessment document
  • Information on each cell is gathered through subjective and objective questionnaires.
  • Scoring Models can be developed to provide an assessment score for each of the cells. Based on the scores, a set of recommendations can be provided to achieve the intended goals.
  • Another interesting thought is to create a As-Is Zachman framework and overlay that with To-Be one in situations where re-engineering of a BI environment is undertaken. This will help us provide a transition path from the current state to the future.
Thanks for reading. If you have used the Zachman framework differently in your environment, please do share your thoughts.

Monday, 10 November 2008

Valuing your Business Intelligence System – Part 1

Sample these statements:
  • Dow Jones Industrial Average jumped 200 points today, a 2% increase from the previous close
  • The carbon footprint of an average individual in the world is about 4 tonnes per year which is a 3% increase over last year
  • The number of unique URL’s as on July 2008 in the World Wide web is 1 trillion. The previous landmark of 1 billion was reached in 2000
  • One day 5% VaR (Value at Risk) for the portfolio is $ 1 Million as compared to the VaR of $ 1.3 Million a couple of weeks back
Most of us buy into the idea of having a single number that encapsulates complex phenomena. Though the details of the underlying processes are important, the single number (and the trend) does act like a bellwether of sorts helping us quickly get a feel of the current situation.
As a BI practitioner, I feel that it is about time that we formulated a way for valuing the BI infrastructure in organizations. Imagine a scenario where the Director of BI in company X can announce thus: “The value of the BI system in this organization has grown 15% over the past 1 year to touch $50 Million” (substitute your appropriate currencies here!).
The core idea of this post is to find a way to “scientifically put a number to your data warehouse”. Here are a few level setting points:
  1. Valuation of BI systems is different from computing the Return on Investment (ROI) for BI initiatives. ROI calculations are typically done using Discounted Cash Flow techniques and are used in organizations to some extent
  2. More than the absolute number, the trends are important which means that the BI system has to be valued using the same norms at different points in time. Scientific / Mathematical rigor helps in bringing the consistency aspect.
  3.  
My perspective to valuation is based on the “Outside-in” logic where the fundamental premise is that the value of the BI infrastructure is completely determined by its consumption. Or in other words, if there are no consumers for your data warehouse, the value of such a system is zero. One simple, yet powerful technique in the “Outside-in” category is RFM Analysis. RFM stands for Recency, Frequency and Monetary and is very popular in the direct marketing world. My 2-step hypothesis for BI system valuation using the RFM technique is:
  • Step 1: Value of BI system = Sum of the values of individual BI consumers
  • Step 2: Value of each individual consumer = Function (Recency, Frequency, Monetary parameters)
Qualitatively speaking, from the business user standpoint, one who has accessed information from the BI system more recently, has been using data more frequently and uses that information to make decisions that are critical to the organization will be given a higher value. A calibration chart will provide the specific value associated with RFM parameters based on the categories within them. For example: For the Recency parameter, usage of information within the last 1 day can be fixed at 10 points while access 10 days back will fetch 1 point. I will explain my version of the calibration chart in detail in subsequent posts. (Please note that the conversion of points to dollar values is also an interesting, non-trivial exercise)
Am sure that people acknowledge the fact that valuing data assets are difficult, tricky at best. But then, lot more difficult questions on nature and behavior have been reduced to mathematical equations – probably, the day on which BI practitioners can apply standardized techniques to value their BI infrastructure is not too far off.
Read More About  Business Intelligence System

Wednesday, 29 October 2008

Business Intelligence Challenge – Product Upgrades & Migrations, Impact Assessment – 3

The next step after ‘Object Consolidation’ is Impact Assessment.
What is Impact Assessment? The process in which, we try to determine the variations or gaps in the existing objects/reports by comparing against the target platform.
The gaps or variations in an existing environment could be due to an existing function being replaced by a new function or an existing function not being supported with an equivalent function in the new platform.
Steps Involved in Impact Assessment
We try to do this comparison against the target platform ‘Impact Assessment’ in an automated way by leveraging the underlying metadata of the existing environment.
1. Take the ‘object metadata’ collected as part of the Object Consolidation
2. Collect details of the possible issues faced during the upgrade or migration process. The source of details would be from
  • prior experience in executing similar projects
  • the manuals and release notes provided by the product vendor
  • the pilot project executed with the subset of objects from the existing setup
3. Convert the ‘issues’ identified into a relational structure table.
  • An issue could be an observation like the function ‘sum’ has been now changed in the newer version of the product to the word ‘sumif’
  • One way of converting this issue to a relational structure is to have two column names ‘issue_case’ and ‘issue_type’ where in issue_case will carry the value ‘sum’ and issue_type will carry the value ‘aggregate’.
  • Converting to a relational structure enables using SQL queries for automated search of the impacted objects by joining the ‘object metadata’ table with the ‘issue’ table
4.Run SQL queries joining the ‘issue’ table with the ‘object metadata’ table to determine the impacted existing objects
5.Classify each object by the degree of impact(number of impact points) and decide on the strategy of upgrade/migration for each these groups
Benefits of Impact Assessment
  • Foresee the challenges and being well prepared for system upgrade or migration
  • Ability to estimate and plan the execution & testing phases very effectively
  • Enable building comprehensive test cases
  • Minimize surprises and provide confidence to the execution team
  • Helps in making decisions of whether we should consider a object to be built from scratch or upgrade/migrate
Impact Assessment Challenges
First gathering the knowledge of issues; the options are talk to a person who has done an upgrade project to collect the issue details or perform a quick pilot with an appropriate sample from the set of objects to determine the issues.
Second conversion of issues logs into relational structure and running of queries to determine the impacts; both of these would require a good understanding of the underlying metadata structure, so explore the metadata structure and understand them to the fullest from the point of analysis.
Next time let us discuss on one other key task in an upgrade project…

Tuesday, 21 October 2008

Business Intelligence Value Curve

Every business software system has an economic life. This essentially means that a software application exists for a period of time to accomplish its intended business functionality after which it has to be replaced or re-engineered. This is a fundamental truth that has to be taken into account when a product is bought or for a system that is developed from scratch.
During its useful life, the software system goes through a maturity life cycle – I would like to call it the “Value Curve” to establish the fact that the real intention of creating the system is to provide business value. As a BI practitioner, my focus is on the “Business Intelligence Value Curve” and in my humble opinion it typically goes thro’ the following phases as shown in the diagram.
curve1
Stage 1 – Deployment and Proliferation
The BI infrastructure is created at this stage catering to one or two subject areas. Both the process and technology infrastructure are established and there will be tangible benefits to the business users (usually the finance team!). Seeing the initial success, more subject areas are brought into the BI landscape that leads to the first list of problems – lack of data quality, completeness and duplication of data across data marts / repositories.
Stage 2 – Leveraging for Enterprise Decision Making
This stage takes off by addressing the problems seen in Stage-1 and overall enterprise data warehouse architecture starts taking shape. There is increased business value as compared to Stage-1 as the Enterprise Data Warehouse becomes a single source of truth for the enterprise. But as the data volume grows, the value is diminished due to scalability issues. For example, the data loads that used to take ‘x’ hours to complete now needs at-least ‘2x’ hours.
Stage 3 – Integrating and Sustaining
The scalability issues seen at the end of Stage-2 are alleviated and the BI landscape sees much higher levels of integration. Knowledge is built into the set up by leveraging the metadata and the user adoption of the BI system is almost complete. But the emergence of a disruptive technology (for example – BI Appliances) or a completely different service model for BI (Ex: Cloud Analytics) or a regulatory mandate (Ex: IFRS) may force the organization to start evaluating completely different ways of analyzing information.
Stage 4 – Reinvent
The organization, after appropriate feasibility tests and ROI calculations, reinvents its business intelligence landscape and starts constructing one that is relevant for its future.
I do acknowledge the fact that not all organizations will go through this particular lifecycle but based on my experience in architecting BI solutions, most of them do have stages of evolution similar to the one described in this blog. A good understanding of the value curve would help BI practitioners provide the right solutions to the problems encountered at different stages.

Friday, 10 October 2008

Business Intelligence Challenge – Product Upgrades & Migrations Product Upgrades & Migrations, Object Consolidation – 2

As an initial step one of the key tasks to be considered in any Business Intelligence product upgrade or migration is ‘Object Consolidation’.
What is Object Consolidation? The process of getting to understand the current BI environment by means of the metadata and analysing them with a perspective to determine and eliminate redundant objects. The ‘object’ in a BI product would be its reports and the semantic layer definitions (like Universe in Business Objects).
Steps Involved in Object Consolidation
1. Locate all objects (reports and semantic definitions). These objects could be from a central repository and as well from individual user folders and desktops
2. Check whether the Object’s metadata are available in a relational storage (metadata repository) else build processes that would collect the metadata of the objects and store them into a relational structure
3. Run SQL queries against the relational structure to determine
a.‘Duplicates’; the objects that have same metadata elements
b.‘Clusters’; the objects that have similar metadata elements. when objects(reports) differ between them by a few 1 or 2
metadata elements then these Objects are grouped as ‘Clusters’
c. ‘ Dormant’; the objects that are no longer used
d. Complexity of the objects in terms of factors like the number of metadata elements being used in an object
4. Share the object consolidation findings to the users for confirmation and verification
5. By eliminating the duplicate & dormant and including only the prime in a cluster prepare the consolidated list of objects
a.Duplicate objects are directly removed
b.From the Cluster objects only the key object is considered for upgrade. After the upgrade of the key object rest of the
objects in the same cluster are derived from this upgraded key object
The consolidated list of objects and the understanding of the complexity of the existing environment becomes one of the key inputs to plan for the upgrade process.
Benefits of Object Consolidation
1. Eliminating upgrade of unwanted objects, saving on effort & cost
2. Enabling to build a clean system in the newer version or platform ensuring easier system maintenance
3. Enables effective upgrade planning based on the understanding of the environment
4. Improves the understanding of the existing environment through the metadata links
Object Consolidation Challenge: Accessing the metadata of the objects would be a challenge since many of the BI products don’t expose the metadata that can be queried through SQLs. But almost every products provide SDK kits through which the metadata can be accessed or expose the metadata as XML files. We would need to build tools that can pull the metadata using SDKs or in the cases of XML files build XML readers/parsers to pull the required metadata.